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Abstract
A study of spin localized excitations in ferromagnetic tangentially magnetized
dots of cylindrical shape and of nanometric size is presented. A recently
formulated variational theory permits us to study the most representative
localized spin modes of the spectrum. One of these, the fundamental mode,
is mainly localized in the central part of the dot endfaces and is analogous to the
Kittel uniform mode in ellipsoids. We also investigate the dynamical properties
of spin modes localized in the lateral part of the dot endfaces along the direction
of the applied magnetic field, studying the dependence of their localization on
the variational parameter and the applied magnetic field. Finally, a comparison
of the calculated frequencies of some of these localized modes with available
experimental data is performed.

1. Introduction

In this last decade the study of the dynamical properties of magnetic nanostructures has been
of great interest both experimentally and from a theoretical point of view. A great deal of
experimental work has shown evidence for discretization effects due to the lateral confinement
of nanostructured materials of different shapes [1, 2]. In order to explain the measurements,
great advances in the calculation of magnetic normal modes have been made in recent years.

One can distinguish between analytical and micromagnetic calculations performed to
describe the dynamical properties of confined magnetic systems. To understand the dynamical
properties of discs, two analytical models that describe some of the spin excitations in
tangentially magnetized discs with strong approximations on the boundary conditions and on
the choice of eigenfunctions have recently been formulated [3, 4]. Micromagnetic calculations
based on a dynamical matrix approach applied to cylindrical dots [5] have shed light on

0953-8984/07/305012+15$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/30/305012
mailto:zivieri@fe.infn.it
http://stacks.iop.org/JPhysCM/19/305012


J. Phys.: Condens. Matter 19 (2007) 305012 R Zivieri et al

Figure 1. Geometry of the system and the reference frame.

the most important properties of spin modes determining the mode profiles and the mode
eigenfrequencies. On the other hand, a very recent theory of spin modes able to encompass
the dynamical properties of spin modes in cylindrical dots, which proposes suitable trial
eigenfunctions for each family of modes and obtains new boundary conditions, has been
developed by Zivieri and Stamps [6].

In the present paper we show some interesting applications of this theory for the study
of the dynamical properties of the most important localized spin modes of the spectrum in a
cylindrical dot with a radius in the nanometric range and for different aspect ratios. Firstly,
a detailed study of the dynamical properties of the most representative mode, the fundamental
(F), which is mainly localized in the central part of the dot endfaces is carried out. Moreover, the
most representative spin modes localized in the region close to the dot edges (end modes) are
investigated and the dependence of their localization on the variational parameter is examined.
The outline of this paper is as follows. In section 2 we recall the formalism of the variational
theory formulated in [6]. Section 3 is devoted to an investigation of the dynamical properties
of the F mode that represents the resonant mode of the spectrum. In section 4 we present
the application of the variational method to end modes, studying the lateral localization in
detail. The comparison of the calculated frequencies of the most representative localized modes
with available Brillouin light scattering (BLS) experimental data is performed in section 5.
Conclusions are drawn in the final section 6.

2. Theory

We choose a Cartesian reference frame (x, y, z) with the z-axis normal to the dot endfaces and
the static magnetization M0 aligned along the y-axis and assumed uniform (see figure 1). Let
us recall the basic equations of the theoretical model formulated in [6]. The physical quantities
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are expressed in a cylindrical coordinate system (ρ, φ, z). The total magnetization given by
the sum of a static and a small dynamic part, respectively, is M(ρ, t) = M0 + m(ρ, t). In
the model the dynamic magnetization of the spin modes was supposed uniform along the z-
direction. As already pointed out in [6], this assumption seems less realistic for dots of aspect
ratio β > 0.25 with β = L/R (L is the dot thickness and R is the dot radius). Neglecting
second-order dynamic terms, the linearized equations of motion are

− 1

γ

∂m(ρ, t)

∂ t
= m(ρ, t) × Heff(ρ) + M0 × heff

d (ρ, t) (1)

where γ is the gyromagnetic ratio. The static internal field to first-order [7] may be written
as Heff(ρ) = H + H(1)

s (ρ). H is the external magnetic field, H(1)
s (ρ) is the first-order static

demagnetizing field H1
s (r) averaged over z and z ′ and the dynamic effective field is given by

heff
d (ρ, t) = hexch(ρ, t) + hd(ρ, t). hexch(ρ, t) = α∇2m(ρ, t) is the dynamic nonuniform

exchange field where α = 2A
M2

s
is the exchange constant and A is the exchange stiffness constant.

hd(ρ, t) is the dynamic dipolar field expressed as a functional of the dynamic magnetization.
The eigenfunctions are the dynamic magnetization components mx(ρ, t) and mz(ρ, t). Their
amplitudes m0x and m0z define the precession plane and are assumed to vary in time according
to exp(−iωt) with ω the spin mode frequency. Simplifying the temporal dependence and
writing (1) in terms of components we get after straightforward algebra

	2 =
[∫

d2ρm∗n′
x (ρ)(H + H y

s (ρ) − αMs∇2)mn
x(ρ) − Ms

∫
d2ρm∗n′

x (ρ)hn
x(ρ)∫

d2ρm∗n′
x (ρ)mn

x(ρ)

]

×
[∫

d2ρm∗n′
z (ρ)(H + H y

s (ρ) − αMs∇2)mn
z (ρ) − Ms

∫
d2ρm∗n′

z (ρ)hn
z (ρ)∫

d2ρm∗n′
z (ρ)mn

z (ρ)

]

(2)

where 	 = ω/γ . H y
s (ρ) = −4π Ms Nyy(ρ) is the y-component of the first-order

demagnetizing field averaged over z and z ′. Nyy(ρ), the static demagnetizing tensor component
along the y-direction, plays the role of the static demagnetizing factor along y; Ms = |M0| is
the saturation magnetization.

Let us recall the integrals appearing in (2) which will be useful for the next discussion.

(i) Normalization integral
Nnn′

i = ∫
d2ρmn′

i (ρ)mn
i (ρ) = Nn

i δnn′

(ii) Exchange integral
Enn′

i = Ēnn′
i /Nnn′

i with Ēnn′
i = −αMs

∫
d2ρm∗n′

i (ρ)∇2mn
i (ρ) = Ēn

i δnn′ defined including
the minus sign.

(iii) Static demagnetizing integral
Dnn′

i = D̄nn′
i /Nnn′

i with D̄nn′
i = ∫

d2ρm∗n′
i (ρ)H y

s (ρ)mn
i (ρ) = D̄n

i δnn′

(iv) Dynamic demagnetizing integral
dnn′

i = d̄nn′
i /Nnn′

i with d̄nn′
i = Ms

∫
d2ρm∗n′

i (ρ)hn
di(ρ) = d̄n

i δnn′ (i = x, z) defined here
including Ms.

The eigenvalues are calculated in the diagonal approximation, i.e. for n = n′ with n
labelling the quantization number that gives the number of nodes throughout the dot. By means
of this approximation we do not take into account the dipole–dipole interaction of spin wave
modes of different types (n �= n′) as also shown in the definition of the demagnetizing integrals
listed in (iii) and (iv). This interaction is caused by the non-diagonal elements of both the static
and dynamic demagnetizing integrals that have been neglected in the derivation of equation (2).
We emphasize that in (2) we consider only an implicit dependence on the azimuthal index m,
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because the spin mode trial eigenfunctions mn
i (ρ) are written as Bessel expansions of increasing

order of stationary waves truncated at the second-order. Finally, results of the variational theory
are applicable to arrays where the interdot distance is larger than or equal to the dot diameter 2R
and is also larger than the dot thickness L. In this way the interdot coupling may be neglected
and it is possible to study the dynamical properties of a single cylindrical dot.

3. Fundamental mode

In this section we discuss the localization of the most representative mode, called the
fundamental (F), whose profile is mainly localized in the central part of the dot endfaces
especially along the direction of the static magnetization. We give a quantitative derivation
of the approximated Kittel equation proposed in [6] to describe the dynamics of the F mode
in cylindrical dots whose radii are in the nanometric range. This excitation is analogous
to the Kittel uniform mode in ellipsoids [8]. In particular, for the case of tangentially thin
magnetized cylindrical dots, the large value of the static demagnetizing factor on the dot border
along M0 (the y-direction) is responsible for the strong lateral pinning of the F mode along
this direction. On the other hand, the profile of the F mode is almost flat in the remaining
part of the dot endfaces, especially along the x-direction where the demagnetizing factor has
a very reduced spatial variation. Hence, it is plausible to assume in the first place a mode
characterized by a vanishing quantized wavenumber attributing its reduced amplitude close to
the boundary to the surface pinning, to the nonuniformity of the static demagnetizing field and
also to the rotation of the static magnetization with respect to the direction of the applied field
towards the dot edge. Due to this assumption the exchange integral of (2), proportional to the
square of the quantized wavenumber, vanishes. Furthermore, the static demagnetizing integral
turns out to be proportional to the static demagnetizing tensor component along the y-direction
averaged over the dot area given by Nyy = 〈Nyy(ρ)〉 where 〈· · ·〉 denotes the geometric average.
Similarly, the dynamic dipolar integrals dx and dz reduce to quantities proportional to the static
demagnetizing tensor components along the x- and z-directions averaged over the dot area
given by Nxx = 〈Nxx (ρ)〉 and Nzz = 〈Nzz (ρ)〉, respectively; moreover, Nxx = Nyy for
a circular cylinder. Therefore, from (2) written in the diagonal approximation for the case
n = n′ = 0 and from the Brown theorem (Nzz = 1 − 2Nyy ) [9] we get the Kittel equation for
the resonance mode in cylindrical dots: 	2 = [H × (H + 4π Ms(1 − 3Nyy))]. In particular,
Nyy = N‖ where N‖ is the effective in-plane demagnetizing factor obtained by means of the
average over the dot area.

Let us obtain the approximated formula. We consider the region 0 � ρ � R/2.
This choice is motivated by the peculiar spatial dependence along the y-direction of the
demagnetizing factor which drastically changes slope at about ρ = R/2. As a matter of
fact, in this region the value of Nyy(ρ) increases by about only 27% along the y-direction
with respect to the value in the dot centre Nyy(ρ = 0). Instead, for R/2 � ρ � R it
rapidly increases, assuming at ρ = R a value about three times larger than the one assumed
at ρ = R/2. The high nonuniformity gradually reduces going towards the x-direction, where
it does not vary appreciably. It is important to note that this is a general trend independent
from the dot aspect ratio considered. Correspondingly, the F mode amplitude reduces by only
27% in the region 0 � ρ � R/2 along the y-direction. This amplitude reduction becomes
less important going towards the x-direction where the profile is almost flat. Instead, in the
region R/2 � ρ � R the amplitude of the F mode, especially along the y-direction, almost
vanishes, because of the rotation of the static magnetization and of the strong nonuniformity of
the demagnetizing field together with the strong pinning on the border. This behaviour, together
with the very similar behaviour of the demagnetizing factor, allows us to take as realistic the
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average of Nyy(ρ) over a dot of radius R̄ = R/2 which corresponds more or less to the point
where important changes of slope of Nyy(ρ) and of the F mode profile along the y-direction
occur. The demagnetizing tensor component along the y-direction obtained in [6] reads
Nyy(ρ, φ) = R[∫ ∞

0 dkχ(kL)J1(k R)J0(kρ) sin2 φ + ∫ ∞
0 dkχ(kL)J1(k R)J1(kρ)/(kρ) cos 2φ]

and its average over the dot area of radius R̄ = R/2 is

N̄yy = 2
∫ ∞

0
dt

1

t
χ(βt)J1(t/2)J1(t) (3)

where t = k R with k the wavevector of the Green’s function Fourier representation used for
the calculation of Nyy(ρ); the dynamical inverse susceptibility χ(βt) = 1 − 1−e−βt

βt is the
result of the average over z and z ′. At this stage we may insert into the Kittel equation for
cylindrical dots the demagnetizing tensor component N̄yy calculated according to (3) in place
of Nyy . Nevertheless, from the calculation of the demagnetizing tensor component in the centre
given by Nyy(ρ = 0) = β

2(
√

1+β2+1)
, we have found that this value represents a very good

approximation of N̄yy in the range of aspect ratios of interest, i.e. for β < 1. In particular, the
calculated Nyy(ρ = 0) almost overlaps with N̄yy , underestimating it by less than 10% for the
aspect ratios β considered and yielding a slight overestimation in the corresponding calculated
F mode frequency. Therefore, we may in turn substitute Nyy(ρ = 0) in place of N̄yy into the
Kittel equation getting

	̃2 = [H × [H + 4π Ms(1 − 3Nyy(ρ = 0))]] (4)

which represents our approximated Kittel formula for the calculation of the F mode frequency
proposed in [6].

Furthermore, for β � 1 (‘ultrathin’ dot limit) a realistic evaluation of the F mode
frequency may also be obtained by means of the Kittel equation for cylindrical dots with the
effective in-plane demagnetizing factor N‖ in place of Nyy(ρ = 0). Even though N‖ is slightly
larger than Nyy(ρ = 0) the frequency evaluated with N‖ is very close to the one determined
using Nyy(ρ = 0) in the ‘ultrathin’ dot limit.

The F mode profiles of the mx component along both the y-direction and the x-
direction for a dot with R = 100 nm and L = 50 nm are shown in figures 2(a) and (c),
respectively; the corresponding spatial variations of Nyy(ρ, φ) are shown in figures 2(b)
and (d), respectively. In figure 2(a) one sees that the F mode is localized in the central
area of the dot endface and that its amplitude almost vanishes on the dot border, especially
because of the nonuniform demagnetizing field and of the strong surface pinning along the
y-direction; as shown in figure 2(c) instead its profile does not vary appreciably along the
x-direction. An analogous behaviour is also shown by the Nyy(ρ, φ) demagnetizing factor.
The F mode profile depicted in figure 2 is the result of the Bessel series expansion of a
symmetric (S) stationary wave of backward-like (BA) nature truncated at the second-order [6],
i.e. mi = m0i [J0(k0ρ) + 2J2(k0ρ) cos 2φ] with J0 and J2 being Bessel functions of the first
kind of zero- and second-order, respectively; the complex dynamic magnetization amplitudes
m0i are assumed proportional (i = x, z) and k0 is the quantized wavenumber. This functional
form is taken under the assumption that the F mode is the first BA mode with no nodes
throughout the dot [5], but note that it could also be classified as the first Damon–Eshbach-
like (DE) mode with no nodes. Even though within this framework the F mode does not
have an effective quantized wavenumber determined by means of the boundary condition the
lateral pinning causes a reduction of its amplitude, especially along the y-direction, giving rise
likewise to a non-vanishing quantized wavenumber. In order to reproduce the strong pinning
at the boundary we have taken k0 = 1.5 × 105 cm−1. On the other hand, it is important to
note that a numerical value slightly larger than k0 could be also approximately obtained as
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Figure 2. (a) Spatial profile of the F mode along the y-direction. The corresponding quantized
wavenumber is k0 = 1.5×105 cm−1. (b) Nyy(ρ, φ) along the the y-direction (φ = π/2). (c) Spatial
profile of the F mode along the x-direction. (d) Nyy (ρ, φ) along the the x-direction (φ = 0).

the first non-vanishing solution k2 of the S BA mode boundary condition (cf equation (44)
in [6]). If one assumes that the n = 2 mode, classified as a 2-BA by Zivieri and Stamps [6]
with mi = m0i [J0(k2ρ) + 2J2(k2ρ) cos 2φ], is affected by the demagnetizing factor in the dot
centre (Nyy(ρ = 0)) this mode could be considered the F mode of the spectrum, because the
two nodes very close to the dot border along the y-direction may be attributed to the lateral
pinning effect. Taking account of the above assumption, the frequency of this mode could
thus be calculated according to equation (4). In this way, the F mode description would be
very similar to the one given for the F mode in the vortex state whose quantized wavenumber
was obtained as the first non-vanishing solution of the radial boundary condition [10]. A non-
vanishing quantized wavenumber gives rise to both exchange and dipolar dynamic fields that
would add a contribution to the F mode frequency, but a numerical evaluation performed for
different aspect ratios has confirmed that these fields may be considered negligible. Hence,
the F mode dynamics in the saturated state may be actually described solely in terms of static
dipolar energy. Finally, it is also reasonable to consider the F mode profile in the saturated state
to also be substantially uniform along the dot thickness for dots of moderate aspect ratio, as
also suggested by micromagnetic calculations.

4. End modes

An interesting family of spin excitations, recently observed and described in stripes [11] and
in dots of different shapes [4, 5, 12], is represented by the so-called end modes that are spin
excitations localized in the lateral part of the dot endfaces along the direction of the applied
field (y-direction). Their localization is mainly due to the strongly inhomogeneous internal
field in the lateral region of the dot endfaces along the y-direction.

Since in [6] the trial eigenfunctions of end modes were proposed without giving their
detailed derivation, we believe that it is now useful to present their derivation for both
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symmetric (S) and antisymmetric (AS) end modes (see the following discussion for the
definition of symmetry). It is plausible to derive the eigenfunctions from the truncated
Bessel series expansion of BA modes assuming that the corresponding quantized wavenumber
becomes complex. The real part of the quantized wavenumber characterizes the dynamics of
end modes giving the possibility that nodal surfaces parallel to the x-axis and close to the
dot edges could also be present, as found for example in dots of elliptical shape by means of
micromagnetic calculations [12]. Instead, the imaginary part modulates the spatial profiles of
end modes describing their lateral localization. This treatment is classical like the approach
proposed in [11] where the analogue of the quasi-classical quantization condition in a potential
well was applied in the lateral region of the stripe. Within that approach the mode was described
by means of a real quantized wavenumber dependent on the spatial coordinate in the lateral
region of the dot where the internal field is highly inhomogeneous. The mode could thus
not exist within the central region of the dot characterized by the potential barrier represented
by the internal field. Instead, in the present model the generic end mode is characterized by
an amplitude depending on the spatial coordinate in the whole dot. The strong amplitude
attenuation in the central part of the dot, which is indirectly related to the imaginary part of
the quantized wavenumber, thus plays the role of the effect of the potential barrier on the mode
amplitude. On the other hand, taking into account that the linearized equation of motion is
a Schrödinger-like equation one could study the system following a further approach. As a
matter of fact, one could find, analogously to the one-dimensional solution of the Schrödinger
equation in quantum mechanics, the one-dimensional (y-direction) solution of the Schrödinger-
like equation in this system. One should thus separate the dot endfaces into three regions
characterized by the two lateral potential wells and by the central potential barrier studying
the spin dynamics not only in the lateral regions but also in the central region. The quantized
wavenumber dependent from the spatial coordinate would be real in the lateral regions and,
due to the penetration inside the potential barrier, it would be purely imaginary in the central
region. Nevertheless, we will not follow this approach here.

As outlined in [6], the equation of motion would admit an eigenfunction with a complex
wavevector if in principle a phenomenological damping term is included in the effective field.
This term should vanish for the other families of modes studied in [6] whose amplitudes are
not affected by the potential barrier. It is well-known from the solution of the linearized
Landau–Lifshitz–Gilbert equation for ferromagnetic films that the Gilbert term is responsible
for the complex frequency of spin waves and the temporal damping in the presence of a real
wavevector. Similarly, it may be possible in general to add a Gilbert-type term to the dynamic
effective field appearing in the linearized equation of motion relating it to the spatial damping
of the mode in the material. It is not our purpose to deal with this term here, but note that it
should be taken into account to explain the presence of a complex wavevector in the presence of
a real frequency. In particular, for a confined system like a dot whose dynamical properties are
described by (1) and by boundary conditions a complex quantized wavenumber kC

n = kR
n ± ikI

n
would arise with the inclusion of the spatial damping term into the dynamic effective field
heff

d (ρ, t) of (1) in the presence of a real frequency. kR
n is the real part of the quantized

wavenumber, kI
n is the imaginary part of the quantized wavenumber and n is the quantization

number. In order to obtain a complex quantized wavenumber in the presence of a real frequency
it is sufficient to substitute a trial eigenfunction in the form of a stationary wave in (1) provided
that the damping term is included into the dynamic effective field of (1). Then, one finds the
complex quantized wavenumber as a function of the assumed known real frequency by means
of the inversion of the dispersion relation. The factor related to kI

n and given by cosh(kI
nρ sin φ)

for both S and AS end mode eigenfunctions (see the following discussion) plays the role of the
amplitude attenuation of the laterally localized spin mode.
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This behaviour may be considered analogous to that of electromagnetic waves in dielectrics
and in magnetic media where plane waves, the solution of the Maxwell equations, are
characterized by a complex wavevector. We recall that the analogy of the dynamical properties
of end modes with electromagnetic waves in homogeneous media is only formal. Actually,
the assumed complex quantized wavenumber of end modes is only a tool to describe in a
phenomenological way the localization of end modes at the dot edges, while the complex
wavevector of electromagnetic waves in homogeneous media is really related to the optical
properties of the material, like for example its complex index of refraction. Nevertheless,
bearing in mind this difference the analogy may be further extended taking into account the
fact that the dynamical properties of end modes are similar to those of BA modes. Actually,
within this model where eigenfunctions are taken as Bessel expansions of resonance modes
truncated at the second-order, the end modes are quasi-transverse excitations with a complex
quantized wavenumber. The magnetization amplitude components m0x and m0z are along the
x and z axes, respectively and the quantized wavenumber is prevalently along the y-direction.
Hence, the behaviour is very similar to that of electromagnetic waves except for the fact that in
this latter case the condition of transversality is rigorously fulfilled. As a matter of fact, if we
suppose that the electric field is parallel to the z-axis and the magnetic field is parallel to the
x-axis the wave propagation is parallel to the y-axis. Consequently, the x-component of the
dynamic magnetization amplitude m0x would play the role of the magnetic field amplitude
and the z-component of the dynamic magnetization amplitude m0z would play the role of
the electric field amplitude. Moreover, the electromagnetic wavevector parallel to the y-axis
should be substituted by the end mode quantized wavenumber which is prevalently along the
y-direction.

Within the variational method we write kC
n = kR

n ± iεkI
n where ε is the variational

parameter. The ± sign in front of kI
n is due to the fact that we choose ε > 0, but note

that it is 	(−ε) = 	(ε) for each ε. A S resonant mode prevalently oscillating along the
y-direction, namely kn

x � 0 may be represented by a cosine function cos(kC
n ρ sin φ) where

y = ρ sin φ and the subscript labelling the y-direction of the quantized wavenumber has
been omitted. Substituting into the argument of the cosine function kC

n = kR
n ± iεkI

n and
keeping only the real part of the trigonometric expansion we get for the dynamic magnetization
mn

i (ρ, φ) = mi
0[cos(kR

n ρ sin φ) cosh(εkI
nρ sin φ)] where cosh(εkI

nρ sin φ) = cos(εikI
nρ sin φ).

Moreover, because of this assumption also the dynamic magnetization amplitudes mi
0, which

are in general complex, become real. The S mode expansion in terms of Bessel functions of the
first kind (cf equation (31) of [6]) inside a cylinder truncated at the second-order leads to

mn
i (ρ, φ) = m0i [J0(k

R
n ρ) + 2J2(k

R
n ρ) cos 2φ][I0(εkI

nρ) − 2I2(εkI
nρ) cos 2φ] (5)

where I0(εkI
nρ) and I2(εkI

nρ) are the modified Bessel functions of the first kind of zero-
and of second-order, respectively, with I0(εkI

nρ) = J0(εikI
nρ), I2(εkI

nρ) = −J2(εikI
nρ),

I0(εkI
nρ) = I0(−εkI

nρ) and I2(εkI
nρ) = I2(−εkI

nρ).
Similarly, the trial eigenfunctions of the AS end modes may also be easily obtained. An

AS resonant mode which prevalently oscillates along the y-direction, namely kn
x � 0, may

be represented by a sine function sin(kC
n ρ sin φ) where the meaning of the symbols is the

same as for the S modes. Substituting the complex quantized wavenumber kC
n = kR

n ± iεkI
n

into the argument of the sine function and keeping only the real part of the trigonometric
expansion we get for the dynamic magnetization components the expression mn

i (ρ, φ) =
mi

0[sin(kR
n ρ sin φ) cosh(εkI

nρ sin φ)]. Also in this case the dynamic magnetization amplitudes
turn out to be real. Again, using the Bessel expansion for AS modes (cf equation (32) of [6])
truncated at the second-order we obtain

mn
i (ρ, φ) = m0i [2J1(k

R
n ρ) sin φ + 2J3(k

R
n ρ) sin 3φ][I0(εkI

nρ) − 2I2(εkI
nρ) cos 2φ]. (6)
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In (5) and in (6) we make the initial assumption on the complex quantized wavenumber
kC

n given by kR
n = kI

n . The first and the most representative of S end modes, the end mode
(EM) together with the corresponding AS EM will be described later in this section. Note that
the EM (AS EM) is a laterally localized mode along the direction of the applied magnetic field
symmetric (antisymmetric) with respect to a plane normal to the dot endfaces passing through
the x-axis. These modes do not have nodal surfaces along both x- and y-directions.

Finally, from (5) and (6) and from the expansion of S and AS resonance modes (cf
equations (31) and (32) of [6], respectively) we may also give the trial eigenfunctions of modes
which mix features of S end modes or AS end modes with those of DE modes. This family
of modes has also been found by means of micromagnetic calculations performed in dots of
different shapes [5, 12]. Their corresponding eigenfunctions may be represented in the form

mnn̄
i (ρ, φ) = m0i [J0(k

R
n ρ) + 2J2(k

R
n ρ) cos 2φ][I0(εkI

nρ) − 2I2(εkI
nρ) cos 2φ]

× [J0(k
′
n̄ρ) − 2J2(k

′
n̄ρ) cos 2φ] (7a)

mnn̄
i (ρ, φ) = m0i [2J1(k

R
n ρ) sin φ + 2J3(k

R
n ρ) sin 3φ][I0(εkI

nρ) − 2I2(εkI
nρ) cos 2φ]

× [J0(k
′
n̄ρ) − 2J2(k

′
n̄ρ) cos 2φ] (7b)

mnn̄
i (ρ, φ) = m0i [J0(k

R
n ρ) + 2J2(k

R
n ρ) cos 2φ][I0(εkI

nρ) − 2I2(εkI
nρ) cos 2φ]

× [2J1(k
′
n̄ρ) cos φ − 2J3(k

′
n̄ρ) cos 3φ] (7c)

mnn̄
i (ρ, φ) = m0i [2J1(k

R
n ρ) sin φ + 2J3(k

R
n ρ) sin 3φ][I0(εkI

nρ) − 2I2(εkI
nρ) cos 2φ]

× [2J1(k
′
n̄ρ) cos φ − 2J3(k

′
n̄ρ) cos 3φ] (7d)

where the last factors on the second members of (7a) and (7b) represent the S DE feature,
whereas the same factors of (7c) and (7d) represent the AS DE feature. In (7a)–(7d) the initial
assumption on the complex quantized wavenumber kC

n is given by kR
n = kI

n. Instead, k ′
n̄ is

the corresponding real quantized wavenumber labelling the DE oscillation which is prevalently
along the x-direction, but with nodes far from the central region of the dot endfaces and nodal
surfaces parallel to the y-direction. The most representative of spin wave modes described
by (7a)–(7d) are those which mix features of EM or AS EM with DE modes. We recall that
additional boundary conditions with respect to those obtained by Zivieri and Stamps [6] should
be derived for the determination of k ′

n̄.
Let us recall the variational end mode spectrum formulated in [6]:

	2(k̃n, ε) =
[(

H + E(k̃n, ε) − 4π Ms

〈
Nyy

(
ρ, φ = π

2
,

3

2
π

)〉
ρ

)

×
(

H + E(k̃n, ε) − 4π Ms

〈
Nyy

(
ρ, φ = π

2
,

3

2
π

)〉
ρ

+ 4π Ms[1 − χ(k̃n L
√

1 + ε2)]
)]

(8)

where E(k̃n, ε) is the exchange integral. The condition ∂	
∂ε

= 0 gives the value of ε which

minimizes the functional. k̃n = kR
n � (kn + kn+2)/2 is the real part of the end mode

quantized wavenumber that determines the minimization of the functional. kn and kn+2

are the nth and the (n + 2)th BA quantized wavenumbers determined by means of the S
and AS BA boundary conditions [6] for the specific n which makes possible the functional
minimization. For the approximation used to evaluate the averaged static demagnetizing field
H y

s = −4π Ms〈Nyy(ρ, φ = π
2 , 3

2π)〉ρ of end modes, with 〈· · ·〉ρ labelling the average over the
ρ-coordinate see [6].

In this paper we discuss in more detail the restriction used in the variational functional
minimization. This restriction is given by the evaluation of the normalization integral given in
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equations (55) and (56) of [6] for S and AS end modes, respectively, for an initial value of the
variational parameter εin = 1 whereby the minimization is performed. The choice of treating
the normalization integral as a constant corresponds to the initial plausible assumption that the
real part of the quantized wavenumber is equal to the imaginary part, namely kR

n = kI
n. In this

way the eigenfunctions of the variational problem are supposed normalized. To demonstrate
that this assumption allows us to obtain realistic results we have evaluated the normalization
integral for other initial values of ε. In this paper the variational procedure has been applied to
study the localization of the EM for a dot of Permalloy of radius R = 100 nm and thickness
L = 50 nm (aspect ratio β = 0.5), but analogous conclusions may also be drawn for other
aspect ratios. The material parameters used in all the numerical calculations are those fitted
to the BLS data reported in [4] of the continuous Permalloy film: 4π Ms = 9.5 kG, γ /2π =
2.996 GHz kOe−1, α/4π = 2.42 × 10−13 cm2. The calculated ρ-averaged demagnetizing
tensor component for β = 0.5 turns out to be 〈Nyy(ρ, φ = π

2 , 3
2π)〉ρ = 0.18. We have

found that the functional may be minimized taking an initial value of εin in the evaluation of
the normalization integral ranging between 0.5 and 1. The minimization has been performed
considering an applied field H = 3 kOe, because at this field the dot may be considered more
uniformly magnetized aside from the region very close to the lateral surface where, due to
border effects, the static magnetization is not parallel to the external field. The value of the
variational parameter found from the minimization of (8) for an initial εin = 0.5 is ε � 0.2
and progressively increases with increasing εin to become ε = 0.78 for εin = 1. Nevertheless,
a realistic profile of the EM with important lateral localization is obtained for values of the
variational parameter close to ε = 0.78. With decreasing ε the lateral localization becomes
progressively less important and therefore we consider these smaller values of ε not to be
realistic. Hence, it is plausible to choose εin = 1 as the initial condition for the evaluation
of the normalization integral. A similar conclusion may also be drawn for the AS EM. In
principle, one could in turn substitute the value of ε found from the minimization of (8) into the
functional and going on with an iterative procedure looking for a self-consistent minimization.
However, even though the functional admits an absolute minimum in the following steps, the
corresponding value of ε becomes progressively much smaller without reaching convergence
and does not give rise to a realistic profile of the EM (AS EM) mode. Hence, we believe that it
is plausible to end this minimization procedure at the first step.

Finally, we have also sought an absolute minimum of (8) free from the above limiting
assumption, i.e. also taking an ε-dependent normalization integral in the minimization, but
we have not found an absolute minimum of the variational functional. As a matter of fact,
the presence of an absolute minimum strongly depends on the competition between the ε-
dependent integrals of (8) related to the exchange and to the dipolar fields. Actually, in a
physically consistent picture the exchange integral should monotonically increase in modulus
with increasing ε, because of its square dependence on the quantized wavenumber, whereas the
z-component of the dipolar integral should exhibit a monotonically decreasing modulus with
increasing ε. Assuming an initial ε-dependent normalization integral, the exchange integral
after an initial increase does have a monotonic decrease with increasing ε and the functional
cannot be minimized.

We now examine the dependence of the lateral localization on the external field. As pointed
out in [6] there is a slight dependence of ε on H that does not substantially change the shape
of the lateral localization. However, the lateral localization is less important at low fields.
The results of this effect are summarized in figure 3 for both the EM and the AS EM at two
different values of the applied field. One sees that the lateral localization along the y-direction
is less important at H = 2 kOe (figures 3(a) and (c)) with respect to the corresponding cases
at H = 3 kOe for both modes. At H = 3 kOe (figures 3(b) and (d)) there are stronger
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Figure 3. (a) Spatial profile of the EM mx eigenfunction at H = 2 kOe for k̃4 = 6.9 × 105 cm−1.
(b) As in (a), but at H = 3 kOe. (c) Spatial profile of the AS EM mx eigenfunction at H = 2 kOe
for k̃3 = 5.4 × 105 cm−1. (d) As in (c), but at H = 3 kOe. H is applied along the y-axis.

localization effects along the same direction. Indeed, with increasing applied field the value
of the variational parameter found from the functional minimization increases corresponding
to a larger imaginary part of the quantized wavenumber. The larger ε is, the more laterally
localized is the mode. In particular, at an external field H = 2 kOe we have found that
the functional is minimized for ε = 0.67 (ε = 0.58) for the EM (AS EM); instead, for
H = 3 kOe the minimization is obtained at ε = 0.78 for the EM and at ε = 0.70 for the
AS EM. The determined quantized wavenumbers are k̃4 = 6.9 × 105 cm−1 for the EM and
k̃3 = 5.4 × 105 cm−1 for the AS EM. The assigned value is substantially independent of the
dot thickness and is obtained from the boundary condition of the S BA and AS BA modes
given in equations (44) and (45), respectively of [6] from which k4 and k6 for EM and k3

and k5 for AS EM are determined. We recall that for the dot studied (R = 100 nm and
L = 50 nm) the internal field is larger than zero for an applied magnetic field larger than
about 1 kOe and that the variational functional (8) admits a minimum for a larger applied
magnetic field, i.e. for H > 1.7 kOe. Moreover, when the minimization is performed for
1.7 kOe < H < 3 kOe lower values of ε are found yielding to lower frequencies with respect
to those obtained for H = 3 kOe. Again, we stress that the minimization performed at a high
external field (H = 3 kOe) is more realistic. The ε found at this field has thus been assumed to
be valid for the frequency calculation in the whole range of H corresponding to the saturated
state, i.e. for 1 kOe < H < 3 kOe.

Note that also for k̃n with n > 4 for S end modes (n > 3 for AS end modes) absolute
minima are found for H = 3 kOe and for lower applied fields ranging more or less in the same
interval as those examined for the EM and the AS EM. These larger k̃n would correspond to the
second S end mode (AS end mode) of the family. Also these modes have a lateral localization
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without nodes throughout the dot. Indeed, as remarked by Bayer et al for thin stripes [13] and
as already pointed out in [6] for cylindrical dots, with increasing applied field the internal field,
which may be represented as a potential barrier in the central part of the dot endfaces, increases
creating multiple localized states in the lateral part. It is worth noting that the shape of the
lateral localization along the direction of the static magnetization of the single localized mode
is not substantially affected by the increase of the magnitude of the applied field showing a very
similar behaviour to that shown by the EM and the AS EM profiles, except for the presence of
slight localization effects also along the x-direction. However, we do not give here the profiles
of these modes, because they do not allow us to draw further interesting conclusions about
lateral localization.

Let us now discuss in more detail the two ε-dependent integrals, i.e. the exchange
integral and the dipolar integral. Although the quantized wavenumber of the end modes
is assumed complex it is important to note that both integrals are real. In particular, the
exchange integral could in turn be complex too, but it turns out to be real because of the
assumed real eigenfunctions of end modes given in (5) and (6). As outlined in [6], since
these modes are localized close to the dot edges it seems realistic to consider their exchange
contribution evaluating the exchange integral on the dot border, i.e. for ρ = R, even though
this approximation could give rise to a slight source of error in the frequency calculation. In
particular, for the dot studied the numerical value of the EM exchange integral that corresponds
to the dynamic exchange field turns out to be E4(k̃4 = 6.9 × 105 cm−1, ε = 0.78) � 500 Oe.
The corresponding AS EM exchange integral is slightly larger, i.e. E3(k̃3 = 5.4 × 105 cm−1,
ε = 0.70) � 600 Oe. The dependence on the i index (i = x, z) is omitted, because within this
model the exchange integral corresponding to the x and z dynamic magnetization components
is the same. Note that at this stage also the normalization integrals N3 and N4 appearing in the
expressions for E3 and E4 are evaluated for ε = 0.70 and ε = 0.78, respectively, found from
the functional minimization. In both cases the corresponding dynamic exchange field gives a
non-vanishing contribution to the effective field.

On the other hand, the dynamic dipolar integral is also real in spite of the complex
quantized wavenumber. As a matter of fact, the z-component of the dynamic dipolar
field hz

d(ρ) � −4π[1 − χ(k̃ L
√

1 + ε2)]mz(ρ) has been obtained within the thin film
approximation that is assumed valid for dots of small aspect ratio. Within this approximation
the real wavevector of the momentum representation of the Green’s function appearing in the
expression of the dipolar field is quantized and is treated on the same footing as the mode
quantized wavenumber which is taken in modulus. We remind that, with increasing aspect
ratio, this approximation becomes progressively less valid. For the dot studied (R = 100 nm,
L = 50 nm) the z-component of the EM dynamic dipolar integral for ε = 0.78 and for
k̃4 = 6.9 × 105 cm−1 turns out to be in modulus |d4

z | � 2150 Oe. The corresponding AS
EM calculated value for ε = 0.70 and k̃3 = 5.4×105 cm−1 is |d3

z | � 2800 Oe. For both modes
the dipolar field contributes significantly to the effective field.

5. Comparison with experimental data

In this section we compare the calculated frequencies of some of the localized modes discussed
in the previous sections with the experimental data. As demonstrated from scattering cross
section calculations [5] S modes with no nodes or with a low number of nodes throughout
the dot give a non-vanishing contribution to the cross section. This is the case of the F mode
that has the largest cross section in the spectrum and of the EM whose cross section is also
appreciable.
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Figure 4. (a) F mode dispersion versus the applied field. Circles: BLS data from [4]. Continuous
line: calculated frequency. Inset: F mode dispersion versus thickness for R = 100 nm at
H = 2.1 kOe. Up triangles: BLS data at L = 15 and L = 24 nm from [6] and at L = 50 nm
from [4]. Squares: calculated frequencies. The line connecting the symbols is a guide to the eyes.
(b) Frequency dispersion of the EM versus thickness. Circles: BLS data at L = 15 and 24 nm
from [6] and at L = 50 nm from [4]. Up triangles: calculated frequencies. The line connecting the
symbols is a guide to the eyes.

In figure 4(a) the frequency of the F mode determined according to (4) is calculated for a
dot of Permalloy of radius R = 100 nm and thickness L = 50 nm and is compared with the
BLS frequency as a function of the applied magnetic field. The calculated frequency excellently
agrees with the measured one for the whole range of H . The F mode dispersion as a function
of thickness for R = 100 nm and at the external field H = 2.1 kOe is shown in the inset
to figure 4(a). One notes that the frequency decreases with increasing dot thickness. Also
in this case the agreement between theoretical calculations and measurements is very good.
In figure 4(b) the EM dispersion as a function of the dot thickness calculated for a dot of
radius R = 100 nm and for three thicknesses L = 15 nm, L = 24 nm and L = 50 nm,
respectively, is compared with BLS frequencies for an external field H = 2.1 kOe. As shown,
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the overall agreement is good. As already pointed out in [6] the slight discrepancy between the
calculated and the experimental frequency at L = 15 nm could be due to the overestimation
of the exchange integral that is evaluated solely from its contribution on the border and is not
calculated throughout the whole dot. As shown in [6] this discrepancy becomes larger for
higher applied fields. Nevertheless, for L = 24 nm where the calculated frequency excellently
agrees with the experimental one it seems that this source of error is no longer present. It is
important to note that the assumptions made in the minimization of the functional, like for
example the initial choice of the normalization integral treated as a constant, the assignment of
the quantized wavenumber k̃n of the end modes determined from the boundary condition of the
BA modes and the search for an absolute minimum made at a fixed external field H = 3 kOe
could be sources of error in the determination of the EM frequency. Finally, the diagonal
approximation used to calculate the eigenfrequencies could also add a further small error in
the determination of the EM frequency. From figure 4(b) one also sees that the calculated EM
frequency at L = 50 nm underestimates the experimental frequency. This disagreement is
not present only for H = 2.1 kOe, but also for other applied fields not reported here; hence,
it may be considered as a general disagreement. In addition to the previous probable reasons
for discrepancy it is possible that for this moderate aspect ratio (β = 0.5), and also for the
determination of the EM frequency, the thin film approximation made for the calculation of the
dipolar contribution together with the assumption of a uniform dynamic magnetization profile
across the thickness of the dot could be less realistic. We expect that, as stated for the case
of BA modes studied in [6], the exact calculation of the dipolar contribution together with the
introduction of a z-dependence for the dynamic magnetization should upshift the EM frequency
at L = 50 nm towards the experimental value.

6. Conclusions

In this paper the variational method recently formulated to describe the dynamical properties of
spin modes in tangentially magnetized thin cylindrical dots has been applied to study the most
representative excitations of the spectrum. The analysis has been performed for dots of size in
the nanometric range with a fixed radius and for different aspect ratios. The frequency of the F
mode, the most representative of the spectrum, has been found according to an approximated
formula derived by means of the Kittel equation of ellipsoids written for cylindrical dots. This
approximated formula has been applied to a dot of moderate aspect ratio (β = 0.5), but is
also valid for dots of smaller aspect ratios. A comparison with BLS experimental frequency
has been performed by studying both the dependence of the external magnetic field at a fixed
aspect ratio and the dependence of the dot thickness at a fixed radius and for a specific external
magnetic field. The general agreement between calculations and experimental data is very
good.

Moreover, the dynamical properties of the most representative end modes have been
investigated. The main restriction of the variational method has been discussed assuming
different initial choices of the normalization integral and showing that the most appropriate
is the one corresponding to the initial choice that the real part of the quantized wavenumber is
equal to the imaginary part. The overall agreement of the calculated frequency of the EM as a
function of the dot thickness with the measured one is good for low aspect ratios (β < 0.25),
but is less convincing for moderate aspect ratios (for example for β = 0.5). Trial eigenfunctions
of spin modes which mix end mode features with DE features have also been proposed.

Furthermore, the local approximation based on the thin film assumption, which also
includes our neglect of the z-dependence in the profile of the dynamic magnetization across
the dot thickness, seems less realistic in dots of moderate aspect ratio and for the case of
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end modes. Finally, in order to further generalize the theory, a variational expression for the
dynamic nonuniform exchange field of the end modes without any initial limiting assumption
should be found to minimize the frequency functional.
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